On the kernel Extreme Learning Machine speedup
نویسندگان
چکیده
In this paper, we describe an approximate method for reducing the time and memory complexities of the kernel Extreme Learning Machine variants. We show that, by adopting a Nyström-based kernel ELM matrix approximation, we can define an ELM space exploiting properties of the kernel ELM space that can be subsequently used to apply several optimization schemes proposed in the literature for ELM network training. The resulted ELM network can achieve good performance, which is comparable to that of its standard kernel ELM counterpart, while overcoming the time and memory restrictions on kernel ELM algorithms that render their application in large-scale learning problems prohibitive.
منابع مشابه
A randomized ELM speedup algorithm
Extreme learning machine (ELM) as an emergent technology has shown its good performance in classification applications. However, ELM algorithm needs to find the inversion of matrix in nature, which will limit its application on many occasions. This paper proposes an ELM speedup algorithm based on the analysis of ELM algorithm. By applying randomized approximation method, the proposed algorithm ...
متن کاملModeling Discharge Coefficient of Side Weir on Converging Channel Using Extreme Learning Machine
In this study, the discharge coefficient of side weirs located on converging channels was simulated for the first time using a new method of Extreme Learning Machine (ELM). To examine the accuracy of the numerical model, the Monte Carlo simulations were used and the experimental values validation was conducted by the k-fold cross validation method. Then, the input parameters were detected for s...
متن کاملApplication of the Extreme Learning Machine for Modeling the Bead Geometry in Gas Metal Arc Welding Process
Rapid prototyping (RP) methods are used for production easily and quickly of a scale model of a physical part or assembly. Gas metal arc welding (GMAW) is a widespread process used for rapid prototyping of metallic parts. In this process, in order to obtain a desired welding geometry, it is very important to predict the weld bead geometry based on the input process parameters, which are voltage...
متن کاملA Hybrid Machine Learning Method for Intrusion Detection
Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...
متن کاملA Novel Extreme Learning Machine Classification Model for e-Nose Application Based on the Multiple Kernel Approach
A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coeffi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition Letters
دوره 68 شماره
صفحات -
تاریخ انتشار 2015